Level-Set Evolution with Region Competition: Automatic 3-D Segmentation of Brain Tumors

نویسندگان

  • Sean Ho
  • Elizabeth Bullitt
  • Guido Gerig
چکیده

This paper discusses the development of a new method for the automatic segmentation of anatomical structures from volumetric medical images. Driving application is the segmentation of 3-D tumor structures from magnetic resonance images (MRI), which is known to be a very challenging segmentation problem due to the variability of tumor geometry and intensity patterns. Level set evolution combining global smoothness with the flexibility of topology changes offers significant advantages over conventional statistical classification followed by mathematical morphology. Level set evolution with constant propagation needs to be initialized either completely inside or outside and can leak through weak or missing boundary parts. Replacing the constant propagation term by a signed local statistical force overcomes these limitations and results in a region competition method that converges to a stable solution. Applied to MR images presenting tumors, probabilities for background and tumor regions are calculated from a preand post-contrast difference image and mixture-modelling fit of the histogram. The whole image is used for initialization of the level set evolution to segment the blobby-shaped tumor boundaries. Preliminary results on five cases presenting different tumors with significant shape and intensity variability demonstrate that the new method might become a powerful and efficient tool for the clinic. Validity is demonstrated by comparison with manual expert segmentation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Level-set segmentation of brain tumors using a threshold-based speed function

The level set approach can be used as a powerful tool for 3D segmentation of a tumor to achieve an accurate estimation of its volume. A major challenge of such algorithms is to set the equation parameters, especially the speed function. In this paper, we introduce a threshold-based scheme that uses level sets for 3D tumor segmentation (TLS). In this scheme, the level set speed function is desig...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002